Received: November 17, 1981

NEW TRANSITION METAL OXYTRIFLUOROMETHANESULFONATE SALTS

VIRGINIA THURSTON, MARIA LUDVIG and G.L. GARD

Department of Chemistry, Portland State University, Portland, Oregon (U.S.A.)

SUMMARY

The reaction of $(CF_3SO_2)_2O$ with salts containing a transition metal in a high oxidation state results in the formation of new transition metal oxytrifluoromethanesulfonate salts.

INTRODUCTION

Salts containing the trifluoromethanesulfonate group (CF_3SO_3-) have been prepared via reaction of trifluoromethanesulfonic acid (CF_3SO_3H) with a variety of metal and nonmetal compounds [1-7]. The use of trifluoromethanesulfonic anhydride, $[(CF_3SO_2)_2O]$, in preparing salts containing the CF_3SO_3- group, particularly salts containing a transition metal in a high oxidation state, has received limited study [8].

0022-1139/82/0000-0000/\$02.75 © Elsevier Sequoia/Printed in The Netherlands

We have found that the following reactions, using $(CF_3SO_2)_2O$, produce new transition metal oxysalts containing the CF_3SO_3 - group:

$$K_2CrO_4 + 2(CF_3SO_2)_2O - K_2CrO_2(CF_3SO_3)_4$$
 (1)

$$K_2Cr_{207} + 3(CF_3SO_2)_{20} - 2KCrO_2(CF_3SO_3)_3$$
 (2)

$$PbCrO_4 + 2(CF_3SO_2)_2O - PbCrO_2(CF_3SO_3)_4$$
 (3)

$$Na_2MoO_4 + 2(CF_3SO_2)_2O - Na_2MoO_2(CF_3SO_3)_4$$
 (4)

$$Na_2WO_4 + 2(CF_3SO_2)_2O - Na_2WO_2(CF_3SO_3)_4$$
 (5)

Also, it was found that a titanium salt containing CF_3SO_3 - groups could be prepared by the following reaction:

$$K_2 TiF_6 + 6 (CF_3 SO_2)_2 O \longrightarrow K_2 Ti (CF_3 SO_3)_6 + 6 CF_3 SO_2 F$$
 (6)

All of these salts are hygroscopic and are stable up to at least 90°C. The infrared spectra for all these compounds are listed in Table I. In general, based on published data for ionic and covalent bonded monodentate CF₃SO₃- groups [1,9,10] tentative assignments can be made for these compounds. For these new salts the absorption bands in the 1305-1347 cm⁻¹ region and the 1231-1247 cm⁻¹ region can be ascribed to the vasym SO₂ and vsym SO₂ stretching vibrations respectively. The vasym CF₃ and vsym CF₃ bands are probably located in the 1260-1265 cm⁻¹ and 1171-1182 cm⁻¹ regions, respectively. The M-O stretching vibrations are assigned to the 1031-1044 cm⁻¹ region by comparison to M₂YO₂(PO₂F₂)₄ salts where M = Na⁺, K⁺ and Y = Cr,W,MO[11]. Other probable assignments are: 766-770 cm⁻¹, C-S stretch; 640-643 cm⁻¹, δ SO₂; 580-586 cm⁻¹, δ sym CF₃; and 520-521 cm⁻¹, δ asym CF₃. In general, these assignments favor a covalently bonded monodentate -OSO₂CF₃ group.

610

$K_2^{CrO_2(CF_3SO_3)}4$	$\frac{PbCrO_2(CF_3SO_3)_4}{PbCrO_2(CF_3SO_3)_4}$	KCrO2 (CF3SO3) 3
1347(m)	1345(m)	1344 (m)
1325(m)	1326(m)	1328 (m)
1263(s,br)	1261(s)	1263(s)
1247(s)	1235(s, sh)	1231(m,sh)
1182(m)	1180(m)	1180(m)
1032(s)	1031(s)	1035(s)
1010(m)	1009(m,sh)	1011(m,sh)
955(m)	957(m)	952(s)
766(w)	905 (w)	905(w)
640(m)	852(w,br)	885 (w)
609(w,sh)	766 (w)	795 (m)
582 (m)	640(s)	765 (m)
520 (m)	608(w, sh)	642(m,s)
	580 (m)	582(w)
	520 (m)	521(m)

						-
I.R.	Spectra	of	Solid	Trifluoromethanesulfonate	Salts	(cm^{-1})

$Na_2MOO_2(CF_3SO_3)_4$	Na2WO2(CF3SO3)4	^K 2 ^{Ti(CF3^{SO}3)6}
1345(w,sh)	1345(w,sh)	1345(w,sh)
1305(w,sh)	1307(m,sh)	1262(s)
1260(s)	1265(s)	1232(s,sh)
1235(s,sh)	1232(s, sh)	1208(m,sh)
1173(s,br)	1171(s)	1180(s)
1034(s)	1044(s)	1032(s)
952 (m)	1035(s,sh)	1028(s,sh)
919(m)	764 (m)	861(m)
766(m)	643(s)	770 (m)
642(s)	58 0 (m)	650(s,sh)
580 (m)	520 (m)	640(s)
520(s)		586 (m)
		520(m)

EXPERIMENTAL

 $(CF_3SO_2)_2O$ was purchased from PCR Research Chemicals and was vacuum distilled prior to use. The infrared (IR) spectrum agreed with the published spectrum. The following salts were purchased from Mallinckrodt (AR) grade: $K_2Cr_2O_7$, K_2CrO_4 , Na_2MOO_4 and Na_2WO_4 . These salts and PbCrO₄ (Baker and Adamson reagent grade, 98%), and K_2TiF_6 (Alfa, 98%) were used as received after drying.

Infrared spectra were recorded with a Perkin-Elmer model 467 infrared spectrophotometer. Gas-phase spectra were obtained with a Monel cell using either AgCl or NaCl windows (path length of the cell was 8.25 cm). Solid-phase spectra were recorded between NaCl and KRS-5 windows (neat) or as KBr pellets. The spectra were calibrated with a polystyrene film. X-rays results were obtained using an XRD-5 General Electric powder camera. The samples were contained in 0.5 mm capillaries; only medium (m) to very strong (vs) intensities lines are reported. Standard analyses were performed by Beller Laboratories in Göttingen, West Germany.

General Procedure

The reaction vessels (Pyrex glass) used in the following synthetic runs with metal oxide salts had a volume of 100 ml and were equipped with a Kontes Teflon stopcock and a Tefloncovered stirring bar.

The metal oxide salt was transferred to a reaction vessel and then dried in vacuo. Excess $(CF_3SO_2)_2O$ was then added. The mixture was magnetically stirred and after it was essentially complete the volatile materials were removed by pumping through a trap cooled to -196°. The remaining solid

612

was pumped until constant weight was achieved. For most reactions the constant weight was used to determine the composition of the solid product as no other products were formed.

Preparation of K2CrO2(CF3SO3)4

To 1.46 mmol of K_2CrO_4 , 23.6 mmol of $(CF_3SO_2)_2O$ was added. The mustard yellow product [1.57 mmol of $K_2CrO_2(CF_3SO_3)_4$] was formed at room temperature (2d) and 50-60° (9d). The compound dec. \sim 93°. A powder spectrum gave the following d values (in Å) along with their respective intensities: 11.38(m), 9.99(m), 5.32(m), 4.88(m), 4.66(s), 3.90(vs).

Anal. Calcd for K₂CrO₂(CF₃SO₃)₄:Cr, 6.85; C, 6.33; S, 16.91; F, 30.06. Found: Cr, 6.82; C, 6.17; S, 16.95; F, 29.6.

Preparation of KCrO₂(CF₃SO₃)₃

To 0.753 mmol of $K_2Cr_2O_7$, 48.3 mmol of $(CF_3SO_2)_2O$ was added. The tan solid [1.51 mmol of $KCrO_2(CF_3SO_3)_3$] was formed at room temperature (38d) in essentially 100% yield. The product dec. at 160°. A powder spectrum gave the following d values (in Å) along with their respective intensities: 10.36(m), 9.01(ms), 7.86(m), 4.97(s), 4.73(vs), 4.29(s), 3.91(vs), 2.89(m), 2.34(ms).

Anal. Calcd for KCrO₂(CF₃SO₃)₃: Cr, 9.11; C, 6.32; S, 16.87; F, 30.0. Found: Cr, 8.88; C, 6.49; S, 16.78; F, 30.7.

Preparation of PbCrO2(CF3SO3)4

To 0.827 mmol of $PbCrO_4$, 10.7 mmol of $(CF_3SO_2)_2O$ was added. The tan-orange solid [0.821 mmol of $PbCrO_2(CF_3SO_3)_4$] was formed at room temperature (9d) and 40-50° (8d) in essentially 100% yield. The product decomposes $\sqrt{90^{\circ}}$. A powder spectrum gave the following d values (in Å) along with their respective intensities: 12.55(m), 10.13(s), 3.92(m), 3.03(m), 2.92(m), 2.62(m), 2.55(m), 2.47(m).

Anal. Calcd for PbCrO₂(CF₃SO₃)₄: Cr, 5,86; C, 5.41; S, 14.45; F, 25.7. Found: Cr, 5.67; C, 6.05; S, 12.09; F, 21.1.

Preparation of Na2MoO2(CF3SO3)4

To 1.18 mmol of Na_2MoO_4 , 13.7 mmol of $(CF_3SO_2)_2O$ was added. The white solid (slight blue tinge), 1.12 mmol of $Na_2MoO_2(CF_3SO_3)_4$ was formed at r.t. (2d) and 60° (6d) in 95% yield. The product decomposes $\sim 160°$. A powder spectrum gave the following d values (in Å) along with their respective intensities: 12.13(m), 6.76(s), 6.01(vs), 4.97(m), 4.76(s), 4.61(s), 4.10(s), 3.72(s), 3.27(m), 2.84(m).

Anal. Calcd for Na₂MoO₂(CF₃SO₃)₄: C, 6.24; S, 16.65; F, 29.6. Found: C, 6.09; S, 15.92; F, 28.4.

Preparation of Na2WO2(CF3SO3)4

To 0.947 mmol of Na_2WO_4 , 20.9 mmol of $(CF_3SO_2)_2O$ was added. The white solid [0.906 mmol of $Na_2WO_2(CF_3SO_3)_4$] was formed at r.t. (2d) and 60-70° (11d) in 96 % yield. The product melted at 242±2°. A powder spectrum gave the following d values (in Å) along with their respective intensities: 11.18(m), 10.66(s), 7.66(m), 4.91(s), 4.74(s), 4.03(m), 3.81(s), 3.31(m), 3.23(m), 2.91(s), 2.81(m).

Anal. Calcd for Na₂WO₂(CF₃SO₃)₄: C, 5.60; S, 14.95; F, 26.57. Found: C, 5.25; S, 13.76; F, 25.0.

614

Preparation of $K_2 Ti(CF_3 SO_3)_6$

To 0.547 mmol of $K_2 TiF_6$, 15.3 mmol of $(CF_3SO_2)_2O$ was added. The white solid [0.547 mmol of $K_2 Ti(CF_3SO_3)_6$] was formed in the dark at r.t. (29 d) in 100% yield. The product melted above 110° to a clear liquid. The volatile product CF_3SO_2F , was identified by its characteristic infrared spectrum. The powder spectrum gave the following d values (in Å) along with their respective intensities: 8.70(ms), 4.85(m), 4.54(ms) 4.38(ms), 3.95(s), 3.66(m), 3.30(m), 2.71(m), 2.55(m), 2.34(m).

Anal. Calcd for $K_2Ti(CF_3SO_3)_6$: C, 7.06; S, 18.85; F, 33.5. Found: C, 6.12; S, 16.75; F, 31.8.

ACKNOWLEDGEMENT

We wish gratefully to acknowledge the support of the donors of the Petroleum Research fund administered by the American Chemical Society.

REFERENCES

Acta, 25, 1515 (1969).

1	J.R. Dalziel and F. Aubke, Inorg. Chem., 12 , 2707 (1973).
2	R.E. Noftle and G.H. Cady, Inorg. Chem., 5, 2182 (1966).
3	S.K. Yarboro, R.E. Noftle, and W.B. Fox, J. Fluorine Chem., $\underline{6}$, 187 (1975).
4	M.B. Dines, Sep. Sci., <u>8</u> , 661 (1973).
5	C.L. Jenkins and J.K. Kochi, J. Am. Chem. Soc., <u>94</u> , 843 (1972).
б	K.F. Thom, U.S. Patent 3,615,169 (1971); U.S. Patent 3,725,296 (1973) and U.S. Patent 3,796,738 (1974).
7	J. Massaux and G. Duyckaerts, Anal. Chem. Acta, <u>73</u> , 416 (1974).
8	M.B. Dines, J. Organomet. Chem., <u>67</u> , C55 (1974).
9	M.G. Miles, G. Doyle, R.P. Cooney, and R.S. Tobias, Spectrochimica

10 H. Bürger, K. Burczyk, and A. Blaschette, Montash. Chem., <u>101</u>, 102 (1970).

11 S.D. Brown, L.M. Emme, and G.L. Gard, J. Inorg. Nucl. Chem., <u>3</u> 2557 (1975).